

ПРОТОКОЛ № 11/2022

испытаний с использованием мобильной измерительно-диагностической лаборатории по определению локальных потребительских характеристик ГНСС

Содержание

1	Цель испытаний	3
2	Объект испытаний	3
3	Средства проведения испытаний	3
4	Время и место проведения испытаний	3
5	Условия проведения испытаний	3
6	Результаты испытаний	6
6.1	Условия навигации по сигналам ГНСС	6
6.2	Погрешности позиционирования по сигналам ГНСС	10
6.3	Работоспособность и эффективность СДКМ	12
7	Выводы	15

Лист

1 ЦЕЛЬ ИСПЫТАНИЙ

- 1.1 Целями испытаний являлись:
- оценка локальных потребительских характеристик глобальных навигационных спутниковых систем ГЛОНАСС, GPS, Beidou, Galileo (далее ГНСС) в условиях загородной трассы
- проверка работоспособности и эффективности российской широкозонной системы дифференциальной коррекции и мониторинга (СДКМ, функциональное дополнение ГНСС).

2 ОБЪЕКТ ИСПЫТАНИЙ

- 2.1 Локальные потребительские характеристики ГНСС:
- количество видимых навигационных космических аппаратов (НКА) каждой ГНСС;
- геометрический фактор точности определения местоположения потребителя ГНСС в пространстве (PDOP) для каждой ГНСС;
- доступность навигации по сигналам ГНСС;
- расчетные погрешности местоопределений по сигналам ГНСС.
- 2.2 Характеристики определялись для маски угла места 5°.

3 СРЕДСТВА ПРОВЕДЕНИЯ ИСПЫТАНИЙ

- 3.1 Мобильная измерительно-диагностическая лаборатория (МИДЛ) ГЮИД.464979.001, заводской номер 073-2003004-01, свидетельство о поверке \mathbb{N}° C-T/11-08-2021/95826327 действительно до 10.08.2022.
- 3.2 Испытания проводились лабораторией 030042 Информационноаналитического центра координатно-временного обеспечения (ИАЦ КВНО) АО «ЦНИИмаш».

Контактная информация:

ИАЦ КВНО АО «ЦНИИмаш»:

Адрес: Московская область, г. Королев, ул. Пионерская, д. 4

Телефон: (495) 513-58-33 E-mail: midl@glonass-iac.ru

4 ВРЕМЯ И МЕСТО ПРОВЕДЕНИЯ ИСПЫТАНИЙ

- 4.1 Испытания проводились с 21.06.2022 по 24.06.2022.
- 4.2 Место проведения испытаний: маршрут г. Москва г. Казань г. Москва.

5 УСЛОВИЯ ПРОВЕДЕНИЯ ИСПЫТАНИЙ

5.1 Маршрут проведения испытаний показан на рисунке 1.

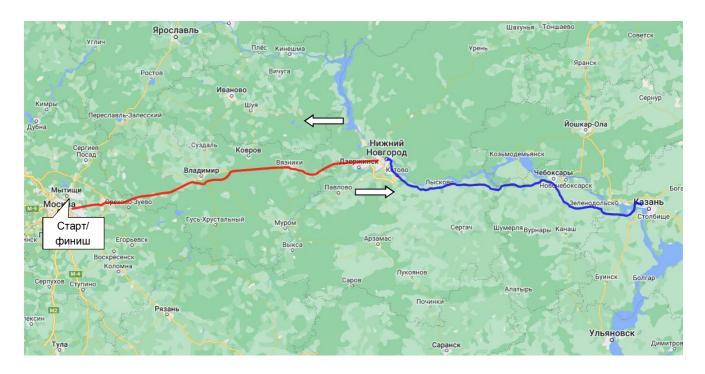


Рисунок 1 Маршрут испытаний

- 5.2 Маршрут обеспечивает характерные для трассы траектории движения, условия затенения и переотражения спутниковых сигналов. Общая протяженность маршрута 1600 км.
 - 5.3 Фотографии отдельных участков маршрута представлены на рисунках 2÷5.

Рисунок 2 Маршрут испытаний, Горьковское шоссе

Рисунок 3 Маршрут испытаний, Южный обход Владимира

Рисунок 4 Маршрут испытаний, Нижегородская обл., Московское ш.

Рисунок 5 Маршрут испытаний, пригород Казани, а/д А-295

5.4 Состав орбитальных группировок ГНСС в период проведения испытаний приведен в таблице 1 (по данным сайта ИАЦ КВНО - https://glonass-iac.ru).

Количество НКА	GPS	ГЛОНАСС	Beidou	Galileo
Bcero	32	25	49	27
Используется по целевому	31	22	44	22
назначению				
Не используется по целевому	1	3	5	5
назначению, в т.ч.				
На этапе ввода в систему	0	0	н/д	н/д
Временно выведен	1	3	н/д	н/д
На исследовании главного	0	0	н/д	н/д
конструктора				
Орбитальный резерв	0	0	н/д	н/д
На этапе летных испытаний	0	0	н/д	н/д

Таблица 1. Состав орбитальных группировок ГНСС

5.5 Характеристики условий навигации по сигналам ГНСС на маршруте испытаний определялись по показаниям приемника SigmaQM из состава МИДЛ.

6 РЕЗУЛЬТАТЫ ИСПЫТАНИЙ

- 6.1 Условия навигации по сигналам ГНСС
- 6.1.1 Сглаженные графики количества видимых НКА и PDOP для всех ГНСС с разбивкой на 2 участка (Москва Нижний Новгород, Нижний Новгород Казань) приведены на рисунках 6 9. Для количества НКА использован усредняющий фильтр, для PDOP медианный.

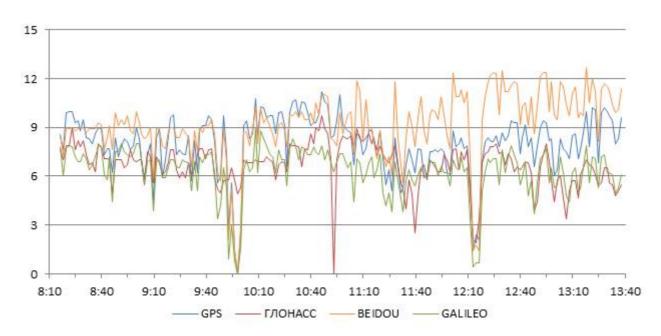


Рисунок 6 Количество видимых НКА. Участок 1 - Москва - Н.Новгород

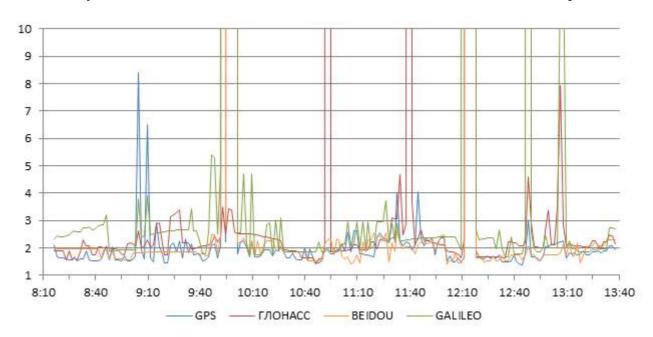


Рисунок 7 Геометрический фактор PDOP. Участок 1 - Москва - Н.Новгород (значения выше 10 не показаны)

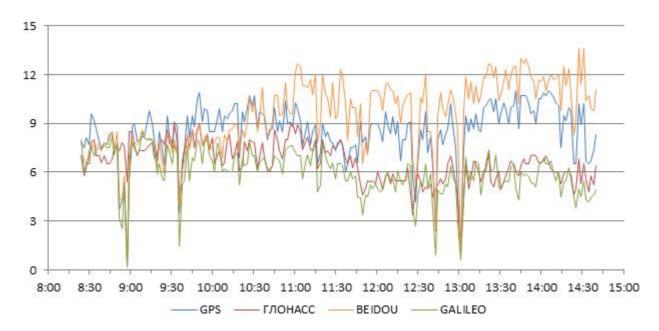


Рисунок 8 Количество видимых НКА. Участок 2 - Н.Новгород - Казань

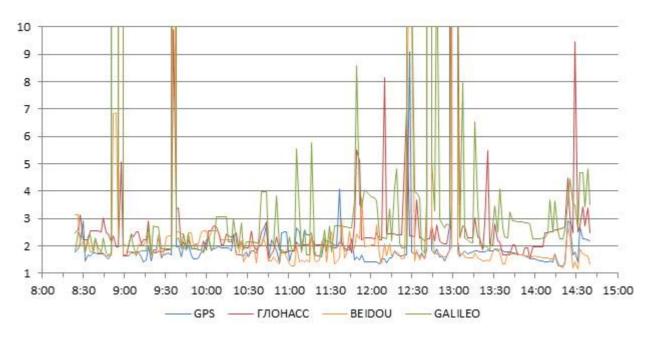


Рисунок 9 Геометрический фактор PDOP. Участок 2 - Н.Новгород – Казань (значения выше 10 не показаны)

6.1.2 Интегральные характеристики условий навигации на участках маршрута и в целом на маршруте приведены в таблице 2.

Таблица 2.Интегральные характеристики условий навигации на маршруте

	Среднее кол-во видимых НКА						Медиана PDOP					Доступность ¹ , %				
					ГЛОНАСС					ГЛОНАСС					ГЛОНАСС+	
Участок	GPS	ГЛОНАСС	Beidou	Galileo	+BeiDou	GPS	ГЛОНАСС	Beidou	Galileo	+BeiDou	GPS	ГЛОНАСС	Beidou	Galileo	BeiDou	
1	8.0	6.7	9.2	6.3	15.8	1.9	2.2	1.9	2.4	1.4	90%	92%	91%	83%	97%	
2	8.5	6.6	9.5	6.0	16.1	1.8	2.3	1.8	2.5	1.3	92%	91%	92%	86%	97%	
Итого	8.3	6.7	9.3	6.1	16.0	1.8	2.2	1.9	2.4	1.3	91%	92%	91%	85%	97%	

¹ Определялась как доля отсчетов с PDOP<6 от общего числа отсчетов

- 6.2 Погрешности позиционирования по сигналам ГНСС
- 6.2.1 Оценка расчетной погрешности позиционирования по сигналам ГНСС проводилась на основе анализа треков, построенных программой RTKPOST (библиотека RTKLIB v.2.4.3 b34) отдельно по каждой ГНСС.
- 6.2.2 В качестве исходных данных использованы навигационные измерения, полученные на маршруте испытаний с помощью приемника SigmaQM.
- 6.2.3 При построении треков были использованы следующие настройки программы RTKPOST:
 - режим позиционирования абсолютный одночастотный;
 - ионосферная коррекция Broadcast;
 - тропосферная коррекция Saastamoinen;
 - маска угла возвышения -5° .
- 6.2.4 Итоговые погрешности позиционирования по отдельным ГНСС приведены таблице 3.

Таблица 3. Расчетные погрешности позиционирования по сигналам ГНСС (треки ПО RTKLIB)

ГНСС		Погреш	ности по вн	ысоте, м			Кол-во место-				
ТПСС	СИП	по уровню				СКП		по ур	овню		определений
	СКП	P=0.5	P=0.68	P=0.95	P=0.997	CKII	P=0.5	P=0.68	P=0.95	P=0.997	
GPS	3.5	2.7	3.5	6.2	11.8	1.3	0.8	1.1	2.2	5.8	11 385
ГЛОНАСС	7.3	4.1	6.0	12.5	36.6	5.6	3.0	4.1	8.1	25.6	11 031
Beidou	4.2	2.8	3.8	6.7	21.3	2.2	1.2	1.6	3.5	12.4	11 371
Galileo ²	3.6	2.3	3.0	6.0	20.0	1.5	0.9	1.1	2.6	8.7	10 098
ГЛОНАСС+Beidou	4.0	3.2	4.1	6.7	15.1	1.9	1.1	1.4	3.3	8.6	11 494

² Отдельные местоопределения со значительными выбросами исключены

- 6.3 Работоспособность и эффективность СДКМ
- 6.3.1 Проверка работоспособности широкозонного функционального дополнения СДКМ и оценка его эффективности проводились с использованием двух образцов НАП на базе NV08C-SCM и НАП SigmaQM. Один из образцов НАП NV08C-SCM на всем протяжении маршрута работал с разрешенным дифрежимом по корректирующей информации (КИ) от СДКМ от спутников Луч-5Б (PRN 125), Луч-5В (PRN 140), Луч-5А (PRN 141) (далее режим СДКМ). Второй в абсолютном режиме. НАП SigmaQM при движении по маршруту в прямом направлении работала в режиме СДКМ, в обратном направлении в абсолютном режиме.
- 6.3.2 Данные о количестве местоопределений в дифференциальном режиме (абсолютные и в процентах по отношению к общему количеству местоопределений с разрешенным дифрежимом) по показаниям НАП на базе NV08C-SCM и SigmaQM приведены в таблицах 4 и 5.

Таблица 4 Доля местоопределений с использованием КИ СДКМ по данным NV08C-SCM

Участок	Всего	Дифрежим по КИ СДКМ					
	отсчетов	Отсчетов	%				
1	19 758	14 059	71%				
2	22 505	21 235	94%				
3	20 688	17 446	84%				
4	18 464	13 896	75%				
Итого	81 415	66 636	82%				

Таблица 5 Доля местоопределений с использованием КИ СДКМ по данным SigmaQM

Участок	Всего	Дифрежим по КИ СДКМ					
	отсчетов	Отсчетов	%				
1	4 065	3 613	89%				
2	4 318	4 300	100%				
Итого	8 383	7 913	94%				

- 6.3.3 По показаниям НАП SigmaQM КИ СДКМ принималась от спутников Луч-5Б и Луч-5В. Доля местоопределений с использованием этой КИ составила соответственно 36% и 64% от общего количества местоопределений в дифрежиме.
- 6.3.4 Погрешности местоопределений НАП NV08C-CSM и SigmaQM в режиме СДКМ и в абсолютном режиме приведены в таблицах 6 и 7.

Таблица 6. Погрешности позиционирования НАП NV08C-CSM

37		Погреш	ности по вы	ысоте, м		Погрешности в плане, м					Кол-во место-
Участок	CI/II		по ур	ОВНЮ		СКП		по ур	овню		определений
	СКП	P=0.5	P=0.68	P=0.95	P=0.997	CKII	P=0.5	P=0.68	P=0.95	P=0.997	
Режим СДКМ											
1	2.7	2.2	2.9	4.4	9.3	1.1	0.8	1.0	1.9	2.8	15 577
2	5.9	2.0	2.9	7.3	40.1	2.9	1.4	2.1	6.2	12.1	15 772
3	4.5	2.9	3.7	9.6	20.1	3.6	1.0	2.0	9.1	16.3	15 354
4	4.1	3.2	4.5	7.5	10.0	1.0	0.7	1.0	1.9	3.1	13 255
Итого	4.5	2.5	3.4	7.1	35.5	2.5	0.9	1.3	5.1	13.4	59 958
				A	бсолютный	режим					
1	3.1	1.9	3.3	5.7	6.7	1.5	1.2	1.5	2.3	4.1	15 577
2	3.1	2.8	3.5	5.2	7.3	1.5	1.1	1.5	2.8	4.9	11 640
3	2.2	1.4	2.1	3.9	11.1	1.1	0.8	1.1	2.0	3.5	15 337
4	3.9	3.2	4.0	7.1	9.3	1.1	0.9	1.2	1.9	2.9	12 897
Итого	3.1	2.3	3.2	5.7	8.8	1.3	1.0	1.3	2.2	4.2	55 451

Таблица 7. Погрешности позиционирования НАП SigmaQM

V		Погреш	ности по вы	ысоте, м		Погрешности в плане, м					Кол-во место-
Участок	СИП		по ур	ОВНЮ		СКП		по ур	овню		определений
	СКП	P=0.5	P=0.68	P=0.95	P=0.997	CKII	P=0.5	P=0.68	P=0.95	P=0.997	-
	Режим СДКМ										
1	11.2	1.8	2.7	6.7	19.9	2.9	1.3	1.6	4.0	15.4	3 469
2	5.9	1.7	2.6	5.3	13.4	3.4	1.2	1.6	4.1	9.5	3 154
Итого	9.0	1.8	2.6	6.1	16.4	3.2	1.2	1.6	4.1	12.7	6 623
	Абсолютный режим										
3	5.0	3.1	4.5	8.2	25.9	4.0	1.0	1.4	3.1	25.2	2 923
4	6.0	4.4	5.8	10.2	21.8	2.4	1.0	1.7	4.3	9.5	2 643
Итого	5.5	3.7	5.1	9.1	25.7	3.4	1.0	1.5	3.9	19.5	5 566

7 выводы

- 7.1 Локальные потребительские характеристики ГНСС в условиях трассы оценивались на маршруте Москва-Казань. Зафиксированное количество наблюдаемых НКА и их расположение в целом достаточны для навигации в совмещенном режиме и в большинстве случаев достаточны для навигации отдельно по ГЛОНАСС, GPS, Beidou. При ограничении по углу места в 5° навигация по каждой из этих ГНСС была доступна в ~90% случаев. Доступность навигации по Galileo – около 85%. Совместное использование сигналов ГЛОНАСС и Beidou увеличивает доступность навигации до 97%.
- 7.2 Случаи отсутствия навигации по сигналам ГНСС в основном вызваны наличием на трассе транспортных средств с установленными подавителями сигналов ГНСС. Как правило, подавлялись сигналы в диапазоне L1 GPS, а также B1 Beidou и E1 Galileo. Реже в полосу подавления попадали сигналы L1 ГЛОНАСС.
- Расчетная погрешность позиционирования в плане по сигналам ГНСС в одночастотном кодовом режиме (р=0.68) на маршруте составила:
 - GPS и Galileo 1.1 м.
 - **-** ГЛОНАСС4.1 м
 - Beidou...... 1.6 м
 - ГЛОНАСС+Beidou 1.4 м
- 7.4 Проверка работоспособности СДКМ показала поступление КИ СДКМ от спутников Луч-5Б и Луч-5В. По показаниям НАП NV08C-CSM и SigmaQM, использованных при проверке, доля местоопределений, полученных с использованием КИ СДКМ, от общего числа местоопределений составила 82 и 94% соответственно. У НАП NV08C-CSM в режиме СДКМ наблюдалось увеличение погрешностей позиционирования для уровней 0.95 и 0.997 по сравнению с абсолютным режимом. У НАП SigmaQM в режиме СДКМ наблюдалось снижение погрешностей по высоте, при этом существенных изменений погрешностей позиционирования в плане не отмечено.

Начальник лаборатории отд. 03004

АО «ЦНИИмаш»

Инженер 1-й категории отд. 03004 АО «ЦНИИмаш»

В.Л. Лапшин
Д.В. Виндерских